If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3h^2=145
We move all terms to the left:
3h^2-(145)=0
a = 3; b = 0; c = -145;
Δ = b2-4ac
Δ = 02-4·3·(-145)
Δ = 1740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1740}=\sqrt{4*435}=\sqrt{4}*\sqrt{435}=2\sqrt{435}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{435}}{2*3}=\frac{0-2\sqrt{435}}{6} =-\frac{2\sqrt{435}}{6} =-\frac{\sqrt{435}}{3} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{435}}{2*3}=\frac{0+2\sqrt{435}}{6} =\frac{2\sqrt{435}}{6} =\frac{\sqrt{435}}{3} $
| 2x+27=423 | | 2x+27=-61 | | 30X+5y=2000000 | | 7x+32=94 | | 3a-(5a-4a)=0 | | (2x/5)-(3x+8)/2=5 | | 4+m=10-3m | | X2+3x-3600=0 | | (2x-14)/4=-5 | | (6x+72)/8=3 | | 2(4x+3)=3(x+7) | | 7x-6=x-18 | | 15^(-3x)=9 | | (y-3/y-4)+1=(y+7/y-1) | | y^2-9y+35=0 | | 200-(2x+12)=150 | | (x+17)-21=111 | | 75-2x=15 | | s+15=-25 | | 3(y+1)+4=2(y-1)+2y | | 3x-2=2xI | | 5^3x+8=25^2x | | X2/x-3=x+2/2x-5 | | 5/11=y/9 | | (-4b+5)-(8b+5)=-60 | | 25-x=24x | | 13x^2-37x-6=0 | | 5x+13=3x-2 | | 32=5w+7 | | 5u+13=78 | | 8y+6=3y+46 | | 0.4=0.6x/200 |